Preparation of Nanosilica/polyacrylate Antifog Coatings on Polycarbonate Substrates

Chao-Chin Chang1,2, Tsung-Ying Tsai1 and Liao-Ping Cheng1,2*

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 25137, R.O.C.

2Energy and Opto-Electronic Materials Research Center, Tamkang University, Tamsui, Taiwan 25137, R.O.C.

Abstract

Superhydrophilic UV-curable nanosilica particles were synthesized through reaction of the surfactant, Tween-20, and the C=C containing silane, MSMA, with silica nanoparticles synthesized from hydrolysis and condensation of tetraethoxysilane in an acid catalyzed sol-gel process. The formed organic/inorganic hybrid nanoparticles were used to prepare antifog (AF) coatings with a special hydrophilic/hydrophobic bi-layer structure on polycarbonate (PC) substrates. The coatings were transparent, adhered strongly to the substrate, and demonstrated superb AF capability on steam tests. The hardness of the coatings reached 1H in the optimal case, considerably higher than that of the PC substrate (2B). After immersed in water for 24 h at 25 °C, this coating still demonstrated good AF capability; however, it took longer time (2 min) to retain transparency on the steam test.

Key Words: Anti-fogging, Silica, Nanocomposite, Coatings

1. Introduction

Fog forms when water molecules condense as discrete droplets large enough to scatter visible light and cause reduction of light transmittance. This phenomenon occurs frequently in our daily life and causes inconveniences. For example, fogs can form on eye-wears, swimming goggles, windshields of vehicles, and bathroom mirrors. Likewise, when forms on optical instruments and photoelectric devices, such as solar panels and infrared microscopes, fog may downgrade the efficiency and/or accuracy of that device. To avoid such undesirable occasions, it is operative to apply an antifog (AF) layer on the surface of use, particularly in case that the surface is hydrophobic and susceptible to moisture deposition [1–28].

Hydrophilic reagents (e.g., glycerol, poly(acrylic acid), poly(vinyl alcohol), surfactants, etc.) were often adopted to produce AF surfaces due to the fact that a hydrophilic surface can spread water droplets into a continuous film that allows transmission of visible lights. Many useful researches have been conducted on the basis of this principle [2–4,14–21]. For example, Maechler et al. prepared AF coatings with a poly(vinyl alcohol)/poly(ethylene-maelic anhydride)/Si-multilayer/PC configuration on polycarbonate (PC) substrates [19]. The Si-multilayer was strongly adhered to the substrate through chemical vapor deposition process. The poly(vinyl alcohol) (PVA) layer provided hydrophilicity, while the poly(ethylene-maelic anhydride) layer served as a covalent linker between PVA and Si-multilayer. The coating was found to resist fog formation upon cold-warm transition and humid air exposure. Zhang et al. partly crosslinked poly(acrylic acid) (PAA) with poly(vinyl alcohol) (PVA) on plasma-treated glasses or poly(ethylene terephthalate) (PET) substrates to form AF coatings [16]. With an appropriate adjustment of PAA/PVA ratio, the coating also demonstrated...
self-healing capability through reformation of hydrogen bonds. Howarter et al. prepared AF coatings by grafting the surfactant, perfluorinated polyethylene glycol oligomer (f-PEG), onto a glass surface pretreated with a silane-type coupling agent [5]. The coatings were dual-functional, as they exhibited hydrophilicity for AF and oleophobicity for contamination resistance.

Although many formulations and processes have been developed for preparing AF coatings for particular usages, it is surprising that the mechanical strengths of the coatings, e.g., hardness and adhesion, were rarely addressed in the literature. Previously, water-washable AF coatings with a bi-layer configuration were prepared in our laboratory [21]. The bottom layer (primer), serving as a binder and a mechanical support, is an inorganic-organic hybrid comprising silica and polyacrylate. The top layer was formulated based on the primer, while incorporating IPDI-and HEMA-modified Tween-20 as the hydrophilic agent. The coatings were very hard, adhere perfectly on the PMMA substrate, and performed well on steam tests. It is, however, found that the adherence and hardness (1B) of the coating became unsatisfactory, when the same formulation was applied on PC substrates (hardness 2B). Thus, in this research, a new formulation was designed with the aim to improve the adhesion strength and hardness of the AF coatings on the soft PC substrates. The detailed preparation procedure and characterizations are introduced in the sections that follow.

2. Methods

2.1 Material

3-(Trimethoxysilyl) propyl methacrylate (MSMA, 98%), tetraethoxysilane (TEOS, > 98%), 2-hydroxyethyl methacrylate (2-HEMA, 97%), polyoxyethylene (20) sorbitan monolaurate (Tween-20, Mw = 1227.5), 2-propanol (IPA, 99.8%), and dipentaerythritol hexaacrylate (DPHA, regent grade) were purchased from Aldrich. Methyl ethyl ketone (MEK, 99.5%) was purchased from J.T. Baker. 1,6-Hexanediol diacrylate (HDDA, 97%) was provided by Eternal Chemical, Taiwan. The photo initiator, 2-hydroxy-2-methyl-hexanediol-1-phenyl-propan-one (Darocure 1173, 99.8%) was supplied by Ciba-Geigy Ltd. All materials were used as received.

2.2 Preparation of the Anti-fog Coatings

2.2.1 The Bottom Layer (primer)

The UV-curable coating sol for the primer was prepared by mixing the monomers (DPHA, HDDA, and 2-HEMA), photo-initiator (Darocure 1173), and the solvent (MEK) at room temperature in a dark bottle. The molar ratio of HDDA/DPHA/2-HEMA was 2.2/9/1. The amount of Darocure 1173 accounted for 5% of the total weight of added monomers. The solid content was adjusted to 50% by means of MEK. The obtained sol was roller-coated (50 μm) on a PC substrate, and then pre-baked at 80 °C for 30 s., followed by UV-irradiation to yield a cured film on the substrate. The irradiation power was carefully chosen such that DPHA was only partly cross-linked (~60% according to the FTIR spectroscopy). The remaining double bonds can be used to link with the top (AF) layer during subsequent UV-curing.

2.2.2 The Top Layer

Firstly, the surfactant, Tween-20, was modified by reaction with the NCO-containing silane, ICPTES (cf. Scheme 1). ICPTES and Tween-20 at the molar ratio of 1:2 were mixed with dehydrated MEK (molar ratio of Tween-20:MEK = 1:23.6) at room temperature for the period of 30 min. under de-aeration (N2(g)). Then, the temperature was raised to 50 °C, and dibutyltin dilaurate (0.2% of the total weight of ICPTES and Tween-20) acting as the catalyst was added to invoke the urethanation reaction, which was allowed to proceed for 5 h. Periodically, aliquots of samples were withdrawn and FTIR-analyzed to monitor the progress of the reaction. The ob-

Scheme 1. Synthetic route for the hydrophilic agent, T20.
tained hydrophilic agent (ICPTES-Tween20) is abbrevi-
ated as T20, hereinafter.

Then, the formed T20 was bonded to silica nanopar-
ticles by a modified sol-gel process, cf. Scheme 2(a) and
2(b). Briefly, an appropriate amount of TEOS was mixed
with 2-propanol (weight ratio of TEOS/IPA = 4.5/5.0) to
form a homogeneous solution. Thereafter, HCl(aq) (pH
1.2) was added to trigger the hydrolysis and condensa-
tion of TEOS. The molar ratio of H2O/TEOS was set to 4,
and the reaction was continued for 3 h under agitation.
Silica nanoparticles of ~3 nm were formed during this
period, as determined by dynamic light scattering meth-
method. Then, T20 solution was slowly added in the sol to-
gether with an additional amount of HCl(aq). The weight
ratio of T20 solution/silica sol/HCl (aq) was 70/88/10.8.
After 3 h of reaction, the coupling agent, MSMA, and
additional HCl(aq) were added drop-by-drop into the sil-
ica sol, cf. Scheme 2(c). The reaction was carried out for
another 3 h to yield modified nano-silica particles (termed
MTSiO2) that contained both C=C and Tween-20 on their
surfaces. The compositions of various species for this re-
action are summarized in Table 1. The top AF layer was
prepared by adding appropriate amount of photo-initia-
tor to the as-prepared sol, roller-coating it on the partly-
cured bottom layer, followed by pre-drying (80 °C, 30 s)
and UV-curing to give a film of ca. 15 μm in thickness.
The formed AF coatings were heat treated at 80 °C for 2
h to remove residual solvents.

2.3 Characterization

The synthesized sols and the AF coatings were char-
acterized by the following methods:

(1) The infrared absorption spectra of the samples were re-
corded on a Fourier transform infrared spectrophotom-
eter (FTIR, Nicolet spectrometer 550, USA). For sols,
the sample was dropped onto a KBr disc, and then the
solvent was removed by evaporation under vacuum. For
cured films, spectra were obtained in the attenuated total
reflection (ATR) mode. For all experimental runs,
spectra were collected over the wavenumber range of
400-4000 cm-1 with a resolution of 4 cm-1.

(2) Nuclear magnetic resonance (1H-NMR) spectrome-
try was employed to confirm successful synthesis of
T-20. The spectra were recorded on an NMR spectrom-
trometer (Avance AVII 600, Bruker, Germany) operated
at 600 MHz with deuterated acetone used as the
locking solvent (chemical shift, δ~2.1 ppm).

(3) The size and size distribution of nano-silica dispersed
in the sol were determined using a particle sizer that
applies dynamic light scattering protocol (Malvern,

Table 1. Compositions of various species for preparing
MTSiO2

<table>
<thead>
<tr>
<th>Sample code</th>
<th>T20 sol (g)</th>
<th>SiO2 sol (g)</th>
<th>HCl(aq) (g)</th>
<th>MSMA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2S1</td>
<td>70</td>
<td>88</td>
<td>17.9</td>
<td>10.8</td>
</tr>
<tr>
<td>T2S2</td>
<td>70</td>
<td>88</td>
<td>17.9</td>
<td>10.8</td>
</tr>
<tr>
<td>T2S3</td>
<td>70</td>
<td>88</td>
<td>17.9</td>
<td>10.8</td>
</tr>
<tr>
<td>T0S1</td>
<td>70</td>
<td>–</td>
<td>17.9</td>
<td>10.8</td>
</tr>
<tr>
<td>T0S2</td>
<td>70</td>
<td>–</td>
<td>17.9</td>
<td>10.8</td>
</tr>
<tr>
<td>T0S3</td>
<td>70</td>
<td>–</td>
<td>17.9</td>
<td>10.8</td>
</tr>
</tbody>
</table>

a: scheme 2(a); b: scheme 2(b); c: scheme 2(c).
The instrument incorporates a monochromatic coherent helium neon laser (633 nm) as the light source. A 4 ml sample was injected into the quartz cuvette secured on the holder, and then the scattered light was recorded at an angle of 173° with respect to the incident beam.

(4) Morphologies of the cured films were observed using field emission scanning electron microscope (Leo 1530 FE-SEM, Carl Zeiss). The sample was vacuum-dried and then coated with a layer (ca. 1.0 nm) of a Pt-Pd alloy by means of a sputter coater equipped with a quartz crystal microbalance (QCM) thickness controller. Then, it was imaged at high magnifications (e.g., 100 KX) under the acceleration voltage of 2.5 kV via an in-lens detector.

(5) The contact angle of water on an AF surface was assessed by a contact angle/surface tension analyzer (FTA 125, First Ten Angstroms) at 25 °C. A 6 µl drop of water was deposited onto the AF surface. The obtained image was shape-analyzed to give the contact angle. For each sample, measurement was taken at five different locations and the average value was reported.

(6) Light transmittances of the coatings were measured using a UV/Vis spectrometer (UV 500, Unicam) over the wavelength range of 350-800 nm. The intensity of the transmitted light was collected and converted to transmittance by the built-in software.

(7) Steam tests of various coatings were performed to see their AF capability [21]. The coating surface was exposed to saturated vapor of water at ~95 °C. Condensation of water droplets occurring on the surface was photographed.

(8) Tape tests (ASTM D3359), also known as the peel test, were performed to evaluate the adhesion strength of the coatings. The degree of adhesion (percentage of film resided on the substrate) was counted after being peeled by standard tapes (3M-610). The hardness of the coatings was examined by the widely used pencil test (ASTM D3359) using pencils (JIS K5400, Mitsubishi) of different hardness at the load of 750 g.

3. Results and Discussion

3.1 Chemical Analyses

The FTIR spectra at different times during synthesis of T20 (cf., Scheme 1) is shown in Figure 1. The absorption at 2276 cm⁻¹ corresponds to the vibrations of –NCO groups of ICPTES, which is absent from the spectrum of pure Tween-20 [21]. The band at 1735 cm⁻¹ stands for the stretching vibration of C=O groups on ICPTES or Tween-20. The –OH signal of Tween-20, can be found as a broad hump around 3500 cm⁻¹. Along the progress of the reaction, the –NCO signal declines and a new band at 1536 cm⁻¹ (assigned to –NH absorption) emerges and grows, which proves the formation of urethane linkage between Tween-20 and ICPTES. After 5 h of reaction, the –NCO signal vanishes and –NH reaches its maximum level. That is, the reaction is completed at this time. It is noted that the –SiOC bands at 1103 and 1079 cm⁻¹ remained unchanged throughout the synthesis process. Hence, the silane groups could be used in subsequent sol-gel procedures to form MTSiO₂ nanoparticles, c.f. Scheme 2.

The NMR spectrum T20 synthesized with an ICPTES: Tween-20 molar ratio of 2:1 is shown in Figure 2. The five characteristic peaks (δ = 3.1 (a), 1.7 (b), 0.7 (c), 3.9 (d), and 1.2 (e) ppm) of the ICPTES moiety can be identified, which correspond to the resonance of hydrogen in (=N)CH₂(CH₂)₂, (-CH₂)CH₂(CH₂)₂, (CH₂)₂CH₂(Si)-, (-Si)(O)CH₂-, and (-O)(CH₂)₂CH₃ groups [29]. For the Tween-20 part, the chemical shifts at δ = 0.9, 1.3, 1.6, 2.3, 3.6, and 4.1 ppm depict the resonances of CH₃, (CH₂)n, CH₂CH₂(C=O), (CH₂)CH₂(C=O), (CH₂CH₂O)n, and O=COCH₂, respectively [30]. The synthesized T20
exhibits a new chemical shift at 6.2 ppm, which stems from the –NH on the urethane bond of T20 [30]. Also noted is the change of peak “a” (3.4 ppm) in pure ICPTES (CH₂N=C=O) to 3.1 ppm in T20 (CH₂NHC=O). These evidences assure urethane linkage being successfully formed via reaction between ICPTES and Tween-20.

Silica nanoparticles were synthesized by hydrolysis and condensation of TEOS in the presence of HCl(aq), cf. Scheme 2(a). FTIR analysis for this reaction can be found in the literature [31–35]. The formed silica was then reacted with T20 to give hydrophilic nanoparticles (TSiO₂), cf. Scheme 2(b). The reaction was examined by FTIR and the obtained spectra are shown in Figure 3. The absorptions at 1100, 785, and 434 cm⁻¹ correspond to the asymmetric stretching, symmetric stretching, and bending vibrations of Si-O-Si, respectively. The Si-OH signals can be found at 950 cm⁻¹ (symmetric stretching) and 3333 cm⁻¹ (asymmetric stretching). The intensities of these absorptions increase during the course of reaction. The C=O at 1698 cm⁻¹ and CH₃ at 2923 cm⁻¹ signify the presence of T20 on TSiO₂ nanoparticles. TSiO₂ was further modified by bonding with MSMA, cf. Scheme 2(c). FTIR spectra related to this reaction and UV-curing of the C=C on MTSiO₂ nanoparticles have been presented previously [32–35].

3.2 DLS Analysis, SEM Imaging, and Transmittance

Dynamic light scattering (DLS) was used to determine the size of MTSiO₂ particles dispersed in the sol. For sample T2S2, Figure 4(a) shows that the particle size falls over a small range of 2-12 nm. The maximum number percentage occurs at 3.2 nm and most of the particles are smaller than 5 nm, which implies that particle-particle aggregation is not in evidence in the present case. Such is typical of sol-gel processes carried out under strong acidic conditions. Figure 4(b) shows the average size of nanoparticles (i.e., SiO₂, TSiO₂, and MTSiO₂) at different times during their synthetic process, c.f., Scheme 2. The particles grow very rapidly after initiation due to condensation between Si-OH groups of silica, then the growth rate declines, and after ca. 1 h of reaction the particles gradually approach a final average size of 3.2 nm. As these nanoparticles contain C=C double bonds on their surface, it is possible to chemically link them to the polymer matrix through UV-curing.

Figure 5 shows the cross sectional SEM micrographs of the cured coating T2S2. At a lower magnification, Figure 5(a) indicates that the cross section comprises two continuous layers with thickness being 9.1 for the primer and 6.53 μm for the AF layer. The total thickness (~16 μm) is consistent with that measured by a thickness gauge (BYK), 14 ± 2 μm. The high magnification image of a typical region in the AF layer is illustrated in Figure 5(b). It is uniform free of any aggregated or phase-separated domains under the resolvable length scale of 30 nm. That is, MTSiO₂ particles have been finely dispersed in the polymer matrix through covalent linkages between the organic moiety of MTSiO₂ and the polymer.
Light transmittance of the coatings confirms the SEM observation. As shown in Figure 6(a), all of the tested samples are transparent with transmittance approaching that of the PC substrate (~92%). The sample T2S2 was soaked in water (25°C) for 24 h, dried under ambient condition, and then its transmittance again measured. Figure 6(b) indicates that even after soaking, the transmittance remains virtually unchanged; in other words, the coating tolerates well plain water-washing.

3.3 Contact Angle, Mechanical Strength, and AF Performance

Contact angle, hardness, adhesion strength, and AF performance of the coatings were examined and the results are summarized in Table 2. The PC substrate is quite soft with a measured pencil hardness of 2B only.

And because it is hydrophobic (water contact angle = 70°), fogs form quickly on the exposed surface during a steam test, cf., Figure 7(a). After coated with a layer of primer, the hardness increases considerably to 2H and the contact angle drops to 40°. Obviously, the hexa-functional monomer DPHA has been converted to a strong crosslinked network, which imparts protections against mechanical impacts exerted by the pencil. Meanwhile, the 2-HEMA groups in the primer enhance hydrophilicity and bring down the water contact angle. Peel tests indicates that the primer adheres strongly (5B) onto the PC substrate without any trace of detachments. Thus, the present primer formulation works appropriately in terms of mechanical strength and adherence.

Application of an AF layer on the primer brings in super-hydrophilicity. In this case, the contact angles of the coatings become effectively zero degree, cf. Table 2.
As a result, water droplets will spread spontaneously as soon as they touch the surface. The AF capability of one such coating (T2S1) in the steam test is demonstrated in Figure 7(b). It can be seen that the English letters underneath the AF-treated area are well-defined; however, they are invisible for the untreated area. The hardness of the AF layer depends on the formulations, particularly, the SiO₂ and MSMA contents. For example, the hardness of T0S1 is only 1B due to the absence of SiO₂ sol in its synthesis. Incorporation of silica nanoparticles strengthens
the coating considerably. In the cases of T2S1 and T2S2, the hardness reaches HB and 1H, respectively. Enhancement of hardness by MSMA is evident from comparison of the hardness data of T0S1 (B) with T0S3 (HB) or T2S1 (HB) with T2S2 (H). Such is because MSMA not only provides silanol groups for bonding with silica nanoparticles, but also C=C groups for crosslinking with the rigid primer. The AF capability of the coating T2S1 after being soaked in water for 24 h. at 25 °C was examined. Fogs formed on the surface at first, and then after ~2 min of standing, fogs disappeared and the surface turned transparent once again. That is, soaking has downgraded the AF capability of the coating. It is though that some unbounded hydrophilic species have left the AF layer and migrated into the water bath during the soaking process. Therefore, the present AF coatings is more suited to applications where severe washing is not mandatory, such as those used on windshield or back mirror of a vehicle.

4. Conclusion

Anti-fog coatings with a hydrophilic/hydrophobic bi-layer configuration were prepared on polycarbonate (PC) substrates. The upper layer was an organic/inorganic silica hybrid (MTSiO₂) containing Tween-20 and C=C moieties, and was synthesized through a modified sol-gel method at 25 °C. Tween-20 in this layer provided hydrophilicity while C=C was used to chemically linked with the lower layer (primer), which comprised UV-curable monomers, including DPHA, 2-HEMA and HDDA. The formed coatings were highly transparent (transmittance ~90%), adhered perfectly (5B) to PC, extremely hydrophilic (contact angle ~0°), and demonstrated superb AF capability in the steam tests. Through cross-linking of multi-functional monomers in the primer, hardness of the coating reached 1H (vs. 2B for PC) in the optimal case. After soaking in water for 24 h, this coating still demonstrated AF capability; however, it took 2 min to totally spread the deposited water molecules into a transparent film in the steam test.

Acknowledgement

The authors thank the ministry of science and technology of Taiwan for financial support (MOST: 104-2221-E-032-053-MY2).

References

Preparation of Nanosilica/polyacrylate Antifog Coatings on Polycarbonate Substrates

6577. doi: 10.1021/nn302310q

*Manuscript Received: May 31, 2018
Accepted: Oct. 2, 2018*