- 1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is
 - a) –24.8 J
 - b) 14.8 J
 - c) 55.2 J
 - d) -15.2 J
 - e) none of these

ANS: d) -15.2 J

- 2. Calculate the work for the expansion of CO_2 from 1.0 to 2.5 liters against a pressure of 1.0 atm at constant temperature.
 - a) 1.5 liter ⋅ atm
 b) 2.5 liter ⋅ atm
 c) 0
 - d) -1.5 liter \cdot atm
 - e) -2.5 liter \cdot atm

ANS: d) -1.5 liter \cdot atm

- 3. Of energy, work, enthalpy, and heat, how many are state functions?
 - a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2
- 4. Which of the following statements correctly describes the signs of q and w for the following exothermic process at P = 1 atm and T = 370 K?

 $H_2O(g) \rightarrow H_2O(l)$

- a) *q* and *w* are negative.
- b) *q* is positive, *w* is negative.
- c) *q* is negative, *w* is positive.
- d) *q* and *w* are both positive.
- e) *q* and *w* are both zero.

ANS: c) *q* is negative, *w* is positive.

PAGE: 6.1

PAGE: 6.1, 6.2

PAGE: 6.1

- 5. One mole of an ideal gas is expanded from a volume of 1.00 liter to a volume of 10.00 liters against a constant external pressure of 1.00 atm. How much work (in joules) is performed on the surroundings? (T = 300 K; 1 L atm = 101.3 J)
 - a) 456 J
 - b) 912 J
 - c) 2740 J
 - d) 2870 J
 - e) none of these

ANS: b) 912 J

PAGE: 6.1

PAGE: 6.1

- 6. For a particular process q = 20 kJ and w = 15 kJ. Which of the following statements is true?
 - a) Heat flows from the system to the surroundings.
 - b) The system does work on the surroundings.
 - c) $\Delta E = 35 \text{ kJ}.$
 - d) All of these are true.
 - e) None of these are true.

ANS: c) $\Delta E = 35$ kJ.

- 7. Which statement is *true* of a process in which one mole of a gas is expanded from state A to state B?
 - a) When the gas expands from state A to state B, the surroundings are doing work on the system.
 - b) The amount of work done in the process must be the same, regardless of the path.
 - c) It is not possible to have more than one path for a change of state.
 - d) The final volume of the gas will depend on the path taken.
 - e) The amount of heat released in the process will depend on the path taken.
 - ANS: e) The amount of heat released in the process will depend on the path taken. PAGE: 6.1
- 8. Which of the following statements is correct?
 - a) The internal energy of a system increases when more work is done by the system than heat was flowing into the system.
 - b) The internal energy of a system decreases when work is done on the system and heat is flowing into the system.
 - c) The system does work on the surroundings when an ideal gas expands against a constant external pressure.
 - d) All statements are true.
 - e) All statements are false.
 - ANS: c) The system does work on the surroundings when an ideal gas expands against a constant external pressure. PAGE: 6.1

- 9. Which one of the following statements is *false*?
 - a) The change in internal energy, ΔE , for a process is equal to the amount of heat absorbed at constant volume, q_v .
 - b) The change in enthalpy, ΔH , for a process is equal to the amount of heat absorbed at constant pressure, q_v .
 - c) A bomb calorimeter measures ΔH directly.
 - d) If q_n for a process is negative, the process is exothermic.
 - e) The freezing of water is an example of an exothermic reaction.

ANS: c) A bomb calorimeter measures ΔH directly.

PAGE: 6.1,2

PAGE: 6.1

PAGE: 6.2

- 10-13. Consider a gas in a 1.0 L bulb at STP that is connected via a valve to another bulb that is initially evacuated. Answer the following concerning what occurs when the valve between the two bulbs is opened.
 - 10. What is true about the value of *q*?
 - a) It is greater than zero.
 - b) It is equal to zero.
 - c) It is less than zero.
 - d) More information is needed.
 - e) none of these
 - **ANS:** b) It is equal to zero.
 - 11. What is true about the value of ΔH ?
 - a) It is greater than zero.
 - b) It is equal to zero.
 - c) It is less than zero.
 - d) More information is needed.
 - e) none of these
 - **ANS:** b) It is equal to zero.
 - 12. What is true about the value of *w*?
 - a) It is greater than zero.
 - b) It is equal to zero.
 - c) It is less than zero.
 - d) More information is needed.
 - e) none of these
 - **ANS:** b) It is equal to zero.
 - 13. What is true about the value of ΔE ?
 - a) It is greater than zero.
 - b) It is equal to zero.
 - c) It is less than zero.
 - d) More information is needed.

e) none of these

ANS: b) It is equal to zero.

- 14. Two metals of equal mass with different heat capacities are subjected to the same amount of heat. Which undergoes the smallest change in temperature?
 - a) The metal with the higher heat capacity.
 - b) The metal with the lower heat capacity.
 - c) Both undergo the same change in temperature.
 - d) You need to know the initial temperatures of the metals.
 - e) You need to know which metals you have.

ANS: a) The metal with the higher heat capacity. **PAGE:** 6.2

- 15. A 25.0 g piece of aluminum (which has a molar heat capacity of 24.03J/°Cmol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is $4.18J/g^{\circ}C$) initially at 22.3°C. The final temperature of the water is 24.9°C. Calculate the mass of water in the calorimeter.
 - 118 g a)
 - b) 6.57 g
 - c) 3180 g
 - d) 2120 g
 - e) none of these

ANS: a) 118 g

- 16. A 40.2 g sample of a metal is heated to 99.3°C and then placed in a calorimeter containing 120.0 g of water (c = $4.18J/g^{\circ}C$) at 21.8°C. The final temperature of the water is 24.5°C. Which metal was used?
 - a) Aluminum (c = $0.89J/g^{\circ}C$)
 - b) Iron (c = $0.45J/g^{\circ}C$)
 - c) Copper (c = $0.20J/g^{\circ}C$)
 - d) Lead (c = $0.14J/g^{\circ}C$)
 - e) none of these

ANS: b) Iron

- 17. You take 200. g of a solid at 30.0°C and let it melt in 400. g of water. The water temperature decreases from 85.1°C to 30.0°C. Calculate the heat of fusion of this solid.
 - a) 125 J/g
 - b) 285 J/g
 - c) 461 J/g
 - d) 518 J/g
 - e) cannot without the heat capacity of the solid

ANS: c) 461 J/g

© Houghton Mifflin Company. All rights reserved.

PAGE: 6.2

PAGE: 6.2

- 18. Consider a rigid insulated box containing 20.0 g of He(g) at 25.0°C and 1.00 atm in one compartment and 20.0 g of N₂(g) at 115.0°C and 2.00 atm in the other compartment. These compartments are connected by a partition which transmits heat. What will be the final temperature in the box at thermal equilibrium? (C_v (He) = 12.5 J/K mol, C_v (N₂) = 20.7 J/K mol)
 - a) 42.2°C
 - b) 58.9°C
 - c) 70.0°C
 - d) 81.0°C
 - e) none of these

ANS: a) 42.2°C

- 19. Which of the following properties is (are) intensive properties?
 - I. mass
 - II. temperature
 - III. volume
 - IV. concentration
 - V. energy
 - a) I, III, and V
 - b) II only
 - c) II and IV
 - d) III and IV
 - e) I and V

ANS: c) II and IV

- 20. The enthalpy of fusion of ice is 6.020 kJ/mol. The heat capacity of liquid water is 75.4 J/mol°C. What is the smallest number of ice cubes at 0°C, each containing one mole of water, necessary to cool 500. g of liquid water initially at 20°C to 0°C?
 - a) 1
 b) 7
 c) 14
 - d) 15
 - e) 126

ANS: b) 7

PAGE: 6.2

© Houghton Mifflin Company. All rights reserved.

PAGE: 6.2

PAGE: 6.1,2

- 21. 30.0 mL of pure water at 280. K is mixed with 50.0 mL of pure water at 330. K. What is the final temperature of the mixture?
 - a) 290. K
 - b) 311 K
 - c) 320. K
 - d) 326 K
 - e) 405 K

ANS: b) 311 K

- 22. For a particular process q = -17 kJ and w = 21 kJ. Which of the following statements is *false*?
 - a) Heat flows from the system to the surroundings.
 - b) The system does work on the surroundings.
 - c) E = +4 kJ
 - d) The process is exothermic.
 - e) None of these is false.

ANS: c) E = +4 kJ

- 23. Calculate the work associated with the expansion of a gas from 152 L to 189 L at a constant pressure of 14 atm.
 - a) 520 L · atm
 - b) -520 L · atm
 - c) $-260 \text{ L} \cdot \text{atm}$
 - d) 175 L · atm
 - e) $260 L \cdot atm$

ANS: b) $-520 \text{ L} \cdot \text{atm}$

24. Calculate the work associated with the compression of a gas from 121 L to 80. L at a constant pressure of 11 atm.

117

- a) -450 L · atm
- b) 450 L · atm
- c) $3.7 L \cdot atm$
- d) $-3.7 L \cdot atm$
- e) $120 L \cdot atm$
- ANS: b) $450 \text{ L} \cdot \text{atm}$

PAGE: 6.1

PAGE: 6.2

PAGE: 6.1

25. Consider the reaction

$$H_2(g) + (1/2)O_2(g) \rightarrow H_2O(l) \Delta H^\circ = -286 \text{ kJ}$$

Which of the following is true?

- a) The reaction is exothermic.
- b) The reaction is endothermic.
- c) The enthalpy of the products is less than that of the reactants.
- d) Heat is absorbed by the system.
- e) Both a and c are true.

ANS: e) Both a and c are true.

- 26. In the lab, you mix two solutions (each originally at the same temperature) and the temperature of the resulting solution decreases. Which of the following is true?
 - a) The chemical reaction is releasing energy.
 - b) The energy released is equal to $s \times m \times T$.
 - c) The chemical reaction is absorbing energy.
 - d) The chemical reaction is exothermic.
 - e) More than one of these.

- 27. What is the heat capacity of mercury if it requires 167 J to change the temperature of 15.0 g mercury from 25.0°C to 33.0°C?
 - a) $6.92 \times 10^{-3} \text{ J/g}^{\circ}\text{C}$
 - b) $1.12 \times 10^{-2} \text{ J/g}^{\circ}\text{C}$
 - c) 0.445 J/g°C
 - d) $1.39 \text{ J/g}^{\circ}\text{C}$
 - e) 313 J/g°C

ANS: d) 1.39 J/g°C

- 28. A 140.0-g sample of water at 25.0°C is mixed with 100.0 g of a certain metal at 100.0°C. After thermal equilibrium is established, the (final) temperature of the mixture is 29.6°C. What is the heat capacity of the metal, assuming it is constant over the temperature range concerned?
 - a) $0.38 \text{ J/g}^{\circ}\text{C}$
 - b) 0.76 J/g°C
 - c) $0.96 \text{ J/g}^{\circ}\text{C}$
 - d) $0.031 \text{ J/g}^{\circ}\text{C}$
 - e) none of these

ANS: a) 0.38 J/g°C

PAGE: 6.2

PAGE: 6.2

PAGE: 6.2

© Houghton Mifflin Company. All rights reserved.

- 29. For the reaction $H_2O(l) \rightarrow H_2O(g)$ at 298 K, 1.0 atm, ΔH is more positive than ΔE by 2.5 kJ/mol. This quantity of energy can be considered to be
 - a) the heat flow required to maintain a constant temperature.
 - b) the work done in pushing back the atmosphere.
 - c) the difference in the H–O bond energy in $H_2O(l)$ compared to $H_2O(g)$.
 - d) the value of ΔH itself.
 - e) none of these

ANS: b) the work done in pushing back the atmosphere. PAGE: 6.2

30. Consider the reaction

$$\mathrm{C_2H_5OH}(\mathrm{l}) + \mathrm{3O_2(g)} \rightarrow \mathrm{2CO_2(g)} + \mathrm{3H_2O}(\mathrm{l}), \Delta H = -1.37 \times 10^3 \, \mathrm{kJ}$$

When a 15.1-g sample of ethyl alcohol (molar mass = 46.1 g/mol) is burned, how much energy is released as heat?

- a) 0.449 kJ
- b) $2.25 \times 10^3 \text{ kJ}$
- c) $4.49 \times 10^2 \text{ kJ}$
- d) $1.02 \times 10^3 \text{ kJ}$
- e) 196 kJ

ANS: c) $4.49 \times 10^2 \text{ kJ}$

31. $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l), \Delta H = -1.37 \times 10^3 \text{ kJ}$

For the combustion of ethyl alcohol as described in the above equation, which of the following is true?

- I. The reaction is exothermic.
- II. The enthalpy change would be different if gaseous water were produced.
- III. The reaction is not an oxidation-reduction one.
- IV. The products of the reaction occupy a larger volume than the reactants.
- a) I, II
- b) I, II, III
- c) I, III, IV
- d) III, IV
- e) Only I

ANS: a) I, II

PAGE: 6.2,4

- 32. The ΔH value for the reaction $(1/2)O_2(g) + Hg(l) \rightarrow HgO(s)$ is -90.8 kJ. How much heat is released when 32.5 g Hg is reacted with oxygen?
 - a) 9.32 kJ
 - b) 90.8 kJ
 - c) 14.7 kJ
 - d) 40.0 kJ
 - e) none of these

ANS: c) 14.7 kJ

- 33. If 5.0 kJ of energy is added to a 15.5-g sample of water at 10.°C, the water is
 - a) boiling.
 - b) completely vaporized.
 - c) frozen solid.
 - d) decomposed.
 - e) still a liquid.

ANS: e) still a liquid.

- 34. Exactly 313.5 J will raise the temperature of 10.0 g of a metal from 25.0°C to 60.0°C. What is the specific heat capacity of the metal?
 - a) 3.74 J/g°C
 - b) 0.896 J/g°C
 - c) 9.70 J/g°C
 - d) 1.73 J/g°C
 - e) none of these

ANS: b) 0.896 J/g°C

35. The total volume of hydrogen gas needed to fill the Hindenburg was 2.00×10^8 L at 1.00 atm and 25.0°C. How much energy was evolved when it burned?

$$H_2(g)$$
 + (1/2) $O_2(g)$ → $H_2O(l)$, $∆H$ = -286 kJ

- a) $3.5 \times 10^{11} \text{ kJ}$ b) $8.18 \times 10^{6} \text{ kJ}$
- c) $2.86 \times 10^4 \text{ kJ}$
- $\frac{1}{2.00 \times 10^{-} \text{ K}}$
- d) $2.34 \times 10^9 \text{ kJ}$ e) $5.72 \times 10^{10} \text{ kJ}$

ANS: d) 2.34×10^9 kJ

PAGE: 6.2

PAGE: 6.2

PAGE: 6.2

36. $CH_4 + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g), \Delta H = -434 \text{ kJ}$

Based on the above reaction, what energy change occurs when 1.2 moles of methane reacts?

- a) 5.2×10^5 J are released.
- b) 5.2×10^5 J are absorbed.
- c) 3.6×10^5 J are released.
- d) 3.6×10^5 J are absorbed.
- e) 4.4×10^5 J are released.

ANS: a) 5.2×10^5 J are released.

- 37. Given the equation $S(s) + O_2(g) \rightarrow SO_2(g)$, $\Delta H = -296$ kJ, which of the following statement(s) is (are) true?
 - I. The reaction is exothermic.
 - II. When 0.500 mole sulfur is reacted, 148 kJ of energy is released.
 - III. When 32.0 g of sulfur are burned, 2.96×10^5 J of energy is released.
 - a) All are true.
 - b) None is true.
 - c) I and II are true.
 - d) I and III are true.
 - e) Only II is true.

ANS: a) All are true.

38. Consider the reaction:

 $C_2H_5OH(l)$ + 3 $O_2(g)$ → 2 $CO_2(g)$ + 3 $H_2O(l)$; ΔH = -1.37 × 10³ kJ

Consider the following propositions:

- I. The reaction is endothermic
- II. The reaction is exothermic.
- III. The enthalpy term would be different if the water formed was gaseous. Which of these propositions is (are) true?
 - a) I
 - b) II
 - c) III
 - d) I, II
 - e) II, III

ANS: e) II, III

PAGE: 6.2,4

.

PAGE: 6.2

PAGE: 6.2

цв

- 39. What is the specific heat capacity of gold if it requires 48.8 J to raise the temperature of 15 grams of gold 25°C?
 - a) 29 J/g°C
 - b) 0.13 J/g°C
 - c) 79 J/g°C
 - d) $0.011 \text{ J/g}^{\circ}\text{C}$
 - e) none of these

ANS: b) $0.13 \text{ J/g}^{\circ}\text{C}$

- 40. The heat of formation of $Fe_2O_3(s)$ is -826 kJ/mol. Calculate the heat of the reaction $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$ when a 55.8-g sample of iron is reacted.
 - a) -206 kJ
 - b) -413 kJ
 - c) -826 kJ
 - d) -1650 kJ
 - e) $-3.30 \times 10^3 \text{ kJ}$

ANS: b) -413 kJ

- 41. When 0.157 mol NH₃ is reacted with excess HCl, 6.91 kJ of energy is released as heat. What is ΔH for this reaction per mole of NH₃ consumed?
 - a) -22.7 J
 b) -1.08 kJ
 c) -44.0 kJ
 d) +22.7 J
 e) +44.0 kJ

ANS: c) -44.0 kJ

- 42. A 4.0-g sample of Colorado oil shale is burned in a bomb calorimeter, which causes the temperature of the calorimeter to increase by 5.0°C. The calorimeter contains 1.00 kg of water ($CH_2O = 4.184 \text{ J/g}^{\circ}C$) and the heat capacity of the empty calorimeter is 0.10 kJ/°C. How much heat is released per gram of oil shale when it is burned?
 - a) 21 kJ/g
 - b) 42 kJ/g
 - c) 0 kJ/g
 - d) $5.4 \, \text{kJ/g}$
 - e) 5.2 kJ/g

ANS: d) 5.4 kJ/g

PAGE: 6.2

PAGE: 6.2,4

PAGE: 6.2

- 43. If a student performs an endothermic reaction in a calorimeter, how does the calculated value of ΔH differ from the actual value if the heat exchanged with the calorimeter is not taken into account?
 - a) ΔH_{calc} would be more negative because the calorimeter always absorbs heat from the reaction.
 - b) ΔH_{calc} would be less negative because the calorimeter would absorb heat from the reaction.
 - c) ΔH_{calc} would be more positive because the reaction absorbs heat from the calorimeter.
 - d) ΔH_{calc} would be less positive because the reaction absorbs heat from the calorimeter.
 - e) ΔH_{calc} would equal the actual value because the calorimeter does not absorb heat.
 - **ANS:** d) ΔH_{calc} would be less positive because the reaction absorbs heat from the calorimeter. **PAGE:** 6.2
- 44. A bomb calorimeter has a heat capacity of 2.47 kJ/K. When a 0.105-g sample of ethylene (C_2H_4) was burned in this calorimeter, the temperature increased by 2.14 K. Calculate the energy of combustion for one mole of ethylene.
 - a) -5.29 kJb) -50.3 kJc) -572 kJd) -661 kJe) $-1.41 \times 10^3 \text{ kJ}$ **ANS:** e) $-1.41 \times 10^3 \text{ kJ}$
- 45. How much heat is required to raise the temperature of a 6.21-g sample of iron (specific heat = 0.450 J/(g°C) from 25.0°C to 79.8°C?
 - a) 70.0 J b) 101 J
 - c) 386 J
 - d) 756 J
 - e) 153 J

ANS: e) 153 J

PAGE: 6.2

46. Consider the following processes:

$2A \rightarrow 1/2B + C$	$\Delta H_1 = 5 \text{ kJ/mol}$
$(3/2)B + 4C \rightarrow 2A + C + 3D$	$\Delta H_2 = -15 \text{ kJ/mol}$
$E + 4A \rightarrow C$	$\Delta H_3 = 10 \text{ kJ/mol}$

Calculate ΔH for: C \rightarrow E + 3D

- a) 0 kJ/mol
 b) 10 kJ/mol
 c) -10 kJ/mol
 d) -20 kJ/mol
- e) 20 kJ/mol

ANS: c) -10 kJ/mol

47. Consider the following processes:

	ΔH (kJ/mol)
$(1/2)A \rightarrow B$	150.
$3B \rightarrow 2C + D$	-125
$E + A \rightarrow D$	350.

Calculate ΔH for: B + D \rightarrow E + 2C

- a) 325 kJ/mol
- b) 525 kJ/mol
- c) -175 kJ/mol
- d) -325 kJ/mol
- e) none of these

ANS: c) -175 kJ/mol

- 48. Which of the following does *not* have a standard enthalpy of formation equal to zero at 25°C and 1.0 atm?
 - a) $F_2(g)$
 - b) Al(s)
 - c) $H_2O(l)$
 - d) $H_2(g)$
 - e) They all have a standard enthalpy equal to zero.

ANS: c) $H_2O_{(1)}$

© Houghton Mifflin Company. All rights reserved.

PAGE: 6.3

PAGE: 6.3

49. Consider the following numbered processes:

I.
$$A \rightarrow 2B$$

II. $B \rightarrow C + D$
III. $E \rightarrow 2D$
 ΔH for the process $A \rightarrow 2C + E$ is
a) $\Delta H_1 + \Delta H_2 + \Delta H_3$
b) $\Delta H_1 + \Delta H_2$
c) $\Delta H_1 + \Delta H_2 - \Delta H_3$
d) $\Delta H_1 + 2\Delta H_2 - \Delta H_3$
e) $\Delta H_1 + 2\Delta H_2 + \Delta H_3$

ANS: d)
$$\Delta H_1 + 2\Delta H_2 - \Delta H_3$$
 PAGE: 6.3

50. At 25°C, the following heats of reaction are known:

$$\Delta H \text{ (kJ/mol)}$$

$$2\text{ClF} + \text{O}_2 \rightarrow \text{Cl}_2\text{O} + \text{F}_2\text{O}$$

$$167.4$$

$$2\text{ClF}_3 + 2\text{O}_2 \rightarrow \text{Cl}_2\text{O} + 3\text{F}_2\text{O}$$

$$341.4$$

$$2\text{F}_2 + \text{O}_2 \rightarrow 2\text{F}_2\text{O}$$

$$-43.4$$

At the same temperature, calculate ΔH for the reaction:

- $ClF + F_2 \rightarrow ClF_3$
- a) –217.5 kJ/mol
- b) -130.2 kJ/mol
- c) +217.5 kJ/mol
- d) -108.7 kJ/mol
- e) none of these

ANS: d) -108.7 kJ/mol

51. Calculate ΔH° for the reaction $C_4H_4(g) + 2H_2(g) \rightarrow C_4H_8(g)$, using the following data:

 $\Delta H^{\circ}_{\text{combustion}} \text{ for } C_4H_4(g) = -2341 \text{ kJ/mol}$ $\Delta H^{\circ}_{\text{combustion}} \text{ for } H_2(g) = -286 \text{ kJ/mol}$ $\Delta H^{\circ}_{\text{combustion}} \text{ for } C_4H_8(g) = -2755 \text{ kJ/mol}$ a) -128 kJ

- b) -158 kJ
- c) 128 kJ
- d) 158 kJ
- e) none of these

ANS: b) -158 kJ

PAGE: 6.3

PAGE: 6.3

© Houghton Mifflin Company. All rights reserved.

52. Given the following two reactions at 298 K and 1 atm, which of the statements is true?

- 1. $N_2(g) + O_2(g) \rightarrow 2NO(g) \qquad \Delta H_1$
- 2. NO(g) + $(1/2)O_2(g) \rightarrow NO_2(g) \quad \Delta H_2$
- a) ΔH_{f}° for NO₂(g) = ΔH_2
- b) ΔH_{f}° for NO(g) = ΔH_{1}
- c) $\Delta H_{f}^{\circ} = \Delta H_{2}$
- d) $\Delta H_{\rm f}^{\circ}$ for NO₂(g) = $\Delta H_2 + (1/2)\Delta H_1$
- e) none of these

ANS: d)
$$\Delta H_{f}^{\circ}$$
 for NO₂(g) = $\Delta H_2 + (1/2)\Delta H_1$

53. Given the heats of the following reactions:

		<u>ΔH° (kJ)</u>	
I.	$P_4(s) + 6Cl_2(g) \rightarrow 4PCl_3(g)$	-1225.6	
II.	$P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$	-2967.3	
III.	$PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$	-84.2	
IV.	$PCl_3(g) + (1/2)O_2(g) \rightarrow Cl_3PO(g)$	-285.7	
Calculate the value of ΔH° for the reaction below:			

 $P_4O_{10}(s)$ + 6PCl₅(g) → 10Cl₃PO(g)

- a) -110.5 kJ
- b) -610.1 kJ
- c) -2682.2 kJ
- d) -7555.0 kJ
- e) None of these is within 5% of the correct answer.

54. Given: $Cu_2O(s) + (1/2)O_2(g) \rightarrow 2CuO(s) \quad \Delta H^\circ = -144 \text{ kJ}$ $Cu_2O(s) \rightarrow Cu(s) + CuO(s) \qquad \Delta H^\circ = +11 \text{ kJ}$

Calculate the standard enthalpy of formation of CuO(s).

- a) -166 kJ b) -299 kJ
- c) +299 kJ
- d) +155 kJ
- e) -155 kJ

ANS: e) –155 kJ/mol

PAGE: 6.3,4

PAGE: 6.3

PAGE: 6.3,4

- 55. The heat combustion of acetylene, $C_2H_2(g)$, at 25°C, is –1299 kJ/mol. At this temperature, ΔH_{f}° values for CO₂(g) and H₂O(l) are –393 and –286 kJ/mol, respectively. Calculate ΔH_{f}° for acetylene.
 - a) 2376 kJ/mol
 - b) 625 kJ/mol
 - c) 227 kJ/mol
 - d) -625 kJ/mol
 - e) none of these

ANS: c) 227 kJ/mol

PAGE: 6.4

56. Choose the correct equation for the standard enthalpy of formation of CO(g), where $\Delta H_{\rm f}^{\circ}$ for CO = -110.5 kJ/mol (gr indicates graphite).

a)
$$2C(gr) + O_2(g) \rightarrow 2CO(g), \qquad \Delta H^\circ = -110.5 \text{ kJ}$$

b) $C(gr) + O(g) \rightarrow CO(g), \qquad \Delta H^\circ = -110.5 \text{ kJ}$
c) $C(gr) + (1/2)O2(g) \rightarrow CO(g), \qquad \Delta H^\circ = -110.5 \text{ kJ}$
d) $C(gr) + CO_2(g) \rightarrow 2CO(g), \qquad \Delta H^\circ = -110.5 \text{ kJ}$
e) $CO(g) \rightarrow C(gr) + O(g), \qquad \Delta H^\circ = -110.5 \text{ kJ}$
ANS: c) $C(gr) + (1/2)O_2(g) \rightarrow CO(g), \qquad \Delta H^\circ = -110.5 \text{ kJ}$
PAGE: 6.4

57. For the reaction

AgI(s) + (1/2)Br₂(g) → AgBr(s) + (1/2)I₂(s), ΔH_{298}° = -54.0 kJ ΔH_{f}° for AgBr(s) = -100.4 kJ/mol ΔH_{f}° for Br₂(g) = +30.9 kJ/mol

The value of ΔH_{f}° (298) for AgI(s) is:

- c) +61.8 kJ/mol
- d) -77.3 kJ/mol
- e) -61.8 kJ/mol

ANS: e) -61.8 kJ/mol

58. Using the following data, calculate the standard heat of formation of the compound ICl in kJ/mol:

		ΔH° (kJ/mol)
	$Cl_2(g) \rightarrow 2Cl(g)$	242.3
	$I_2(g) \rightarrow 2I(g)$	151.0
	$ICl(g) \rightarrow I(g) + Cl(g)$	211.3
	$I_2(s) \rightarrow I_2(g)$	62.8
a)	-211 kJ/mol	
b)	-14.6 kJ/mol	
c)	16.8 kJ/mol	
d)	245 kJ/mol	
e)	439 kJ/mol	
ANS:	c) 16.8 kJ/mol	

59. Using the information below, calculate ΔH_{f}° for PbO(s)

	PbO(s) + CO(g) → Pb(s) + CO ₂ (g) ΔH_{f}° for CO ₂ (g) = -393.5 kJ/mol	$\Delta H = -131.4 \text{ kJ}$
	$\Delta H_{\rm f}^{\circ}$ for CO(g) = -110.5 kJ/mol	
a)	-151.6 kJ/mol	
b) c)	-283.0 kJ/mol +283.0 kJ/mol	
d)	-372.6 kJ/mol	
e)	+252.1 kJ/mol	
ANS	: a) –151.6 kJ/mol	

- 60. For which of the following reaction(s) is the enthalpy change for the reaction not equal to $\Delta H_{\rm f}^{\circ}$ of the product?
 - I. $2H(g) \rightarrow H_2(g)$
 - II. $H_2(g) + O_2(g) \to H_2O_2(l)$
 - III. $H_2O(l) + O(g) \rightarrow H_2O_2(l)$
 - a) Ι

- b) Π
- III c)
- I and III d)
- II and III e)

ANS: d) I and III

PAGE: 6.4

© Houghton Mifflin Company. All rights reserved.

PAGE: 6.4

PAGE: 6.3,4

61. Consider the following reaction:

 $2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s); \quad \Delta H = -1390.81 \text{ kJ}$

- a) Is the reaction exothermic or endothermic?
- b) Calculate the heat produced when 10.0 g AlCl₃ forms.
- c) How many grams of Al are required to produce 1.00 kJ of energy?

ANS: a) exothermic; b) 52.2 kJ; c) 0.0388 g Al PAGE: 6.2

 ΔH (kJ)

62, 63. To carry out the reaction $N_2 + 2O_2 \rightarrow 2NO_2$ requires 67.7 kJ. To carry out the reaction $N_2 + 2O_2 \rightarrow N_2O_4$ requires 9.7 kJ. Consider the reaction $2NO_2 \rightarrow N_2O_4$.

62. How much energy (absolute value) is involved in the reaction $2NO_2 \rightarrow N_2O_4$?

63. Is the reaction endothermic or exothermic?

ANS: exothermic

64. Consider the following data:

(-)
-62.8
-635.5
-653.1
-1300
-393.51

Use Hess's law to find the change in enthalpy at 25°C for the following equation:

 $CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$

ANS: -713 kJ

PAGE: 6.3

PAGE: 6.4

PAGE: 6.3

PAGE: 6.3

65. Consider the following standard heats of formation:

 $P_4O_{10}(s) = -3110 \text{ kJ/mol}$ $H_2O(l) = -286 \text{ kJ/mol}$ $H_3PO_4(s) = -1279 \text{ kJ/mol}$

Calculate the change in enthalpy for the following process:

 $P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(s)$

ANS: -290 kJ

© Houghton Mifflin Company. All rights reserved.

- 66. The following statements concerning petroleum are all true *except*:
 - a) It is a thick, dark liquid composed mostly of hydrocarbons.
 - b) It must be separated into fractions (by boiling) in order to be used efficiently.
 - c) Some of the commercial uses of petroleum fractions include gasoline and kerosene.
 - d) It was probably formed from the remains of ancient marine organisms.
 - e) All of its hydrocarbon chains contain the same number of carbon atoms.

ANS:	e)	All of its hydrocarbon chains contain the same number of	
		carbon atoms.	

- 67. This fossil fuel was formed from the remains of plants that were buried and exposed to high pressure and heat over time. It is
 - a) coal.
 - b) natural gas.
 - c) diesel fuel.
 - d) propane.
 - e) gasoline.

ANS: a) coal.

68. The coal with the highest energy available per unit burned is

- a) lignite.
- b) subbituminous.
- c) bituminous.
- d) anthracite.
- e) They are equal in energy value.

ANS: d) anthracite.

- 69. All of the following statements about the greenhouse effect are true *except*:
 - a) It occurs only on earth.
 - b) The molecules H_2O and CO_2 play an important role in retaining the atmosphere's heat.
 - c) Low humidity allows efficient radiation of heat back into space.
 - d) The carbon dioxide content of the atmosphere is quite stable.
 - e) a and d

ANS: e) a and d

PAGE: 6.5

PAGE: 6.5

PAGE: 6.5

- 70. One of the main advantages of hydrogen as a fuel is that
 - the only product of hydrogen combustion is water. a)
 - b) it exists as a free gas.
 - c) it can be economically supplied by the world's oceans.
 - d) plants can economically produce the hydrogen needed.
 - it contains a large amount of energy per unit volume of hydrogen gas. e)

ANS: a) the only product of hydrogen combustion is water. **PAGE:** 6.6

- 71. Which of the following is *not* being considered as an energy source for the future?
 - a) ethanol
 - b) methanol
 - c) seed oil
 - d) shale oil
 - e) carbon dioxide

ANS: e) carbon dioxide

72. Acetylene (C_2H_2) and butane (C_4H_{10}) are gaseous fuels. Determine the ratio of energy available from the combustion of a given volume of acetylene to butane at the same temperature and pressure using the following data:

PAGE: 6.6

The change in enthalpy of combustion for

$$C_2H_2(g) = -49.9 \text{ kJ/g}.$$

The change in enthalpy of combustion for

 $C_4H_{10} = -49.5 \text{ kJ/g}.$

- **ANS:** About 2.21 times the volume of acetylene is needed to furnish **PAGE:** 6.6 the same energy as a given volume of butane.
- 73. A property that is independent of the pathway is called an intensive property.

	ANS: False	PAGE: 6.1
74.	In exothermic reaction, potential energy stored in chemical bonds is being con- thermal energy via heat.	nverted to
	ANS: True	PAGE: 6.1
75.	A state function does not depend on the system's past or future.	
	ANS: True	PAGE: 6.1
76.	When a system performs work on the surroundings, the work is reported wit negative sign.	h a
	ANS: True	PAGE: 6.1
© Hou	ghton Mifflin Company. All rights reserved. 131	

77.	The change in enthalpy can always be thought of as equal to energy flow as heat.	
	ANS: False	PAGE: 6.2
78.	The specific heat capacities of metals are relatively low.	
	ANS: True	PAGE: 6.2
79.	The of a system is the sum of the kinetic and potential energies of particles in the system.	all the
	ANS: internal energy	PAGE: 6.1
80.	$\underline{\qquad}$ involves the transfer of energy between two objects due to a temper difference.	erature
	ANS: Heat	PAGE: 6.1